If it's not what You are looking for type in the equation solver your own equation and let us solve it.
147-t^2=04
We move all terms to the left:
147-t^2-(04)=0
We add all the numbers together, and all the variables
-1t^2+143=0
a = -1; b = 0; c = +143;
Δ = b2-4ac
Δ = 02-4·(-1)·143
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{143}}{2*-1}=\frac{0-2\sqrt{143}}{-2} =-\frac{2\sqrt{143}}{-2} =-\frac{\sqrt{143}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{143}}{2*-1}=\frac{0+2\sqrt{143}}{-2} =\frac{2\sqrt{143}}{-2} =\frac{\sqrt{143}}{-1} $
| 2p+17=15p | | (6x-27)+(3x+15)=180 | | -3x+19=82 | | -2(7v+3)=27-3v | | 4+0.2x+3=10 | | -18+11m=15m+18 | | -5f=-6f+18 | | .05=900000/x | | 5(2x+2)=9x+15+x | | 4q+30-14q/2=5 | | 13d=11d-4 | | 5(2x+1)=9x+15+x | | 2x4=-3x-11 | | 45000=1/x | | 1/18=d/15.6 | | -2x-4=60 | | m/3+8=13 | | 25^x=87 | | 20-8x=4(-2x+6) | | 24x+36=x | | (4x+22)+(2x+38)=180 | | 3(k-8)=5(k-8) | | 2(x-3)-(x+4)=3(x-5)+(7-3x) | | 2(6+7n)=36+6n | | 0.2(a-12)=0.6 | | (x-20)+(2x+20)=180 | | 17+17n=18n-2n-1 | | 8y^2(3y^0)^2=0 | | -18+11h=9h+14 | | -15-14b=20-20b+19 | | d/7-9=-12 | | -15-14b=20-20b+10 |